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SYMBOLS

B magnetic induction

c speed of light

F force per particle

f distribution function

gn,gn,rn,Sn integrals of Bessel functions

H magnetic field intensity _

electrons mean free path

7, electrons mean free path ._
L

._ m mass of the particle

n number of particles per unit volume

P momentum of an electron

Q power per unit volume

q phonon wavelength

R radius of an electron orbit _-

Rij reciprocal tensor

Sll. relative attenuation coefficient for a longitudinal

" wave moving pezpendicular to a magnetic field

$22 .relative attenuation coefficient for _-_transversewave

moving perpendicular to a magnetic field _. "
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S33 relative attenuation coefficient for a transverse waves

whose direction of polarization is parallel to the

magnetic field

V velocity of the particle in K space

Vf Fermi velocity

Vs velocity of sound

X product of phonon wave number and classical orbit radius

attenuation coefficient

= _(H) •attenuation in a magnetic fie],_

ratio of the classical to the-._honou-wave length

wavelength of sound _-_.__:- _,

g electric field _ _: :::.
,>

p " density ,, , _ e _.

- 5 ,. 5 _ -

_oij conductivit_ tensor " •,_ •:

- e" effective cond,4ctivity tensor ,_ _- ._
t

:' _O D.C. conductivity , _ , _

relaxation time. ,,

m frequency of the ultrasonic wave = _

mc cyclotron frequency ,_ ,_
O

J

o

c

o •

11

_ o

J
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I. INTRODUCTION

Theoretical investigationsof ultras,_nicattenuation c_,nsist

in calculating the power loss zrom the ultrasonic wave to the con-

duction electror. The theory of ultrasonic attenuation in the

absence of a magnetic field, using the free electron model nave been

_onsidered by Pippard (ref. 1). The free electron model in the

presence of. a magnetic field has been given by KJeld_as and
2,

Holstein (ref. 2) and independenti_ byeCohen, Harrison and Harrison

(ref.,, 3). Theoretical treatments of real _et_ls were investigated _,

by Pippard (ref. 4)_ Kanner (ref. 5)s Akhiezer (ref. 6) and Blount
3

(ref. 7) in the case of zero magnetic field and by Pippa_d (ref. 4), ;: _ =

Gurevich (ref. 8) when a nonzero _gnetic field is present.

These theories have demonstrated that the attenuation of

ultrasonic wave_ propagating:through a metal depend str_z,gly on the
,, F •

produc_ of the wavelength q and the electrons mean free path _.

In tL_ short mean free path region where qZ << i the attenuation

varies as the frequency squared _i_._ When the mean free path is_

long q_ >> i the observed electronic attenuat:"m is found to be
_J

depersdenton the first power of the frequency _.

U • •

When a magnetic field is applied_longitudinall_, or transversely

_o the d._.rectionof 9ropagation the electrons begin to_move in

_ 2
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spiralling orbits. If the orbit of the electron is of the same

magnitude as the ultrasonic wave various resonance situations occur.

This ease represents the phenomena of magnetoacoustic oscillations

in which the attenuation shows as oscillatory dependence on magnetic

field and is periodic i_ H-1.

The Cohen, Harrison and Harrison theory as well as KJeldaas

and Holstein theory on magnetoacoustic show good quantitative

results for a variety of experimental measurements for metals which

can be representea by a free electron model. However, if we were

to use the former theory for the case of a longitudinalwave

movir_ perpendicular to the magnetic field in order to plot attenu-

ation coefficient versus qR where R is the orbital radius of

the electron, one would find no shifts in the extrema for various

q_ values greater than 1. In contrast, KJeldaas and Holstein

graphs on attenuation shows shifts in the minima to be present.

In the limiting case where the magnetic field is negligible

we would expect the exp_esslons for the attenuation coefficient to

approach the equations obtained by Pippard (ref. l) in his theory

on ultrasonic attenuation for zero magnetic field. However in the

Cohen, Harrison and Harrison theory in its present form these ex-

pressions are not readily obtainable, whereas in the KJeldaas and

Holstein theory their equations do approach the limiting situation.

Another distinct difference between the two theories is the require-

ments on the qZ values. In the former, the qZ range is

restricted to values much greater than 1. In the latter there is

1966018468-011
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no stringent conditions for the range of ql.

Recent experiments by Trivisonno and Said (re£. 9) on Potassium

at John Carroll University have shown that the shift in the extrema

for the longitudinal case do occur in agreement with Kjeldaas and

Holstein's theory.

%_lis paper will extend Cohen, HarrisonandHarrison's theory

and show that this theory also predicts the shift in extrema as

well as being adequate for all qZ values. It will also be shown

that this theory goes directly over to the zero magnetic field case.
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II. GENERAL DISCUSSION

Propagation of a sound wave in a metal causes the positive ions

to oscillate around their position of stable equilibrium. Since the

metal coztains a free electron gas in addition to the ions the

electrons will be forces to fellow the ions in their motion in

order to screen out any local charge imbalance and keep the metal

electrically neutral. However, if a phase difference develops

between the ions and electrons an electric current is generated.

These electric currents induce electromagnetic fields which are

able to transfer energy to the conduction electron. As a result

of collisions energy is transferred back to the lattice or thermal

phonons. Thus an irreversible flow of energy from the acoustic

phonons to the thermal phonons.

The attenuation can be regarded as the reduction in amplitude

of the wave per unit distance or rather, the decrease in the number

of acoustic phonons per unit distance as it progresses through the

metal. The attenuation coefficient _ is def£ued as

= 2Q (1)
pU2Vs

where p is the density of the metal, i/2(pU 2) is the energy of the

acoustic wave, Vs Is the velocity of sound and Q the power per

unit volume absorbed by the electrons.

1966018468-013



The _ttenu_tion of the sound wave by a metal depends greatly

on the size of the elect_'ons mean free psth. At room temperature

the attenuation is negligible because �dfree path of the

electrons is so shcrt that collisions are very frequent. Hence

the energy transferred from the sound wave to the electrons is

passed back nearly in phase. However, at low temperatures the mean

free path of the elec%rons is so long that energy transferred

between the sound wave and electrons is passed back with consider-

able lag. _us: ultrasonic attenuation in a metal is a low temper-

ature phenomena and can only be measured if the electrons mean free

path is comparable to the size of the wavelength.

It should be pointed out that although ultrasonic attenuation

is a recent phenomena its roots lle back to the old problem of

electron scattering by elastic waves. M_ny transport proble m" }uch

as electrical and thermal conductivity can be readily explained by

the interaction of electron and phonons. Hence, even though the

range of frequencies are completely different for ultrasonic and

thermal waves they are otherwise identical in nature and have a

common theoretical description. The major difference between ultra-

sonic attenuation and its older counterpart is that for the latter

the mean free path of the conduction electrons is usually ignored.

To date, the most direct method for generating elastic waves

is the use of piezoelectric transducers. In brief, a piezoelectric

crystal will develop a net electrical polarization if it is placed

under elastic strain along certain crystal directious. Thus, if

1966018468-014
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we apply an electric field which varied with time, betwee_ the faces

of piezoelectric crystal a strain field is set up with the same

time variation produced at the free surface of the crystal and

propagates into the interior. Longitudinal or transverse waves may

be produced depending upon the crystal. The waves are introduced

into the solid through a bond and electrical energy is converted

into ultrasoni_ energy. The waves are attenuated during passage

through the metal.

The difference between transverse and longitudinal waves

propagating in a metal is that in the former no density changes

occur and hence no electric fields resulting from space charges.

However, the ionic current may not necessarily compensate the

electric current in which case a magnetic fiel_ is generated and

from these fields an electric field is developed.

The first theoretical investigation of ultrasonic attenuation

in metals is the absence of a magnetic field was performed by

Akhiezer (ref. 8), He predicted a at at low temperatures the con-

duction electrons would act as absorbers of ultrasonic waves.

Many years later Bommel (ref. 10) and MacKinnon (ref. ll) experi-

mentally investigating attenuation of waves in superconductors dis-

covered chat upon crossing the superconducting transition region

the electrons contributed significantly to attenuation thus

verifying Akhiezer's assumption.

The first complete theory of ultrasonic attenuation for a free

electron model of a metal was developed by Plppard (ref. 1). The

1966018468-015
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underlying assumption was that in the absence of collisions the

ultrasonic waves adiabatically distorts the Fermi surface. For

example, a spherical Fermi surface under a small distortion trans-

forms into an ellipsoid. When the collisions between electrons and

ions are taken into account this transformation is never completed,

for the electron-phonon interaction attempts to restore the surface

back to its original shape. Using this concept in conjunction with

kinetic methods of following a single electron through the lattice,

P._p_ard computed the coefficient of attenuation for normal metals.

From the above methods it has been also shown that the attenu-

ation varies as the square of the frequency for q_ << i and for

qZ >> i where the sound wave length becomes comparable or less than

the electrons mean free path, the attenuation varies proportionally

with the first power of the frequency. Pippard's free electron

theory has successfully accounted for most experimental features of

ultrasonic attenuation.

Most of the recent theories of ultrasonic attenuation in metals

is based on the Boltzmaun equation for an electron distribution

function. Its major advantage over the kinetic method is that if

we were to incorporate the effect of an applied field, the calcula-

tions appear to be less formidable. This point may be debatable.

Steinberg (ref. 12) and Blount (ref. 7), have used this method in

calculating the coefficient of attenuation. These results a_e in

agreement with Pippard for arbitrary q_ values in zero applied

magnetic field.

i
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The main objective in the use of the Boltzmann transport equa-

tion is to study the distribution f_nqction f(V,r,t), which repre-

sents the local concentration of particles in a state K in phase

space in the neighborhood of the point r in real space. In order

to extract the information about f, it is necessary to consider

the causes which would tend to produce a change of f with time.

The basic assumption in bhis technique is the use of Liouvi]les'

theorem on the invariance of volume occupied in phase space.

The Boltzmaz_u transport equation in the presence of a sound

•,laveis determined by

_1 c = _ + (V - V)f + _-_ 4 • F (2)

where F is the force per particle obtained from the Lorenz equa-

tion V is the velocity of the particle in K space and

(Sf/_t) c represents collisions between electrons and phonons.

Using the free electron model Pippard (ref. l) calculated the

attenuation for longitudir_l and transverse waves with no restric-

tion on the q7 values. The results for the longitudinal wave in

the absence of a magnetic field is that

nm r (q_)2tan-lq_ l_ (5)- PVs_ [_S(q_ - tan'lq_) "

where • is the relaxation time and n the ntunber of particles

per unit volume. For q_ << l, equation (3) reduces to

¢ nmV_eq_
---- (4)
15 pV_

1966018468-017
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where w is the frequency and V F the Fermi velocity. In the

other extreme; q_ >> 1 the coefficient of attenuation becomes

nmV__, -- (s)
6 pVs

independent of _.

The attenuation for transverse waves is given by

_T = _nm (q_)2 ql,)2q_+1 tan-i qZ - - (8)0VsW

At low frequencies for which the mean free path is smaller

than the wavelength, that is qT.<< l, the attenuation coefficient

may be expressed as

1 nmV_

• ST = 5 PVs2 (7)
[

When the product of qZ attains values greater than unity

(q2.>> 1), the attenuation coefficient is found to be

4 nmV_

= _ s_V_ (8)

At extreme frequencies where a_ >> 1 the attenuation coefficient

is given by

sT = _Vs---_ (9)

belnd independent of frequency. If we further let • _ _ then

s T _ O. This agrees with the usual conclusion for ideal metals that

there is no electron-phonon interaction for shear waves.

We turn now to the effect of a magnetic field on the attenu-

1966018468-018
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atio_, considering a free electron gas. When a magnetic field is

applied the electrons move in spiralling orbit. This causes the

-_Lectron's mean free path to be reduced, thus having more collisions

with the lattice_ Therefore, one would expect that as we increase

the magnetic field the attenuation decreases monotonically. How-

ever, this phenomena depends primarily on the q_ values used.

For q_ << 1 the attenuation decreases for all values of

magnetic field since the effective mean free path of the electrons

is decreased. Steinberg (ref. 15) showed that for this case and

where the magnetic field is perpendicular to the direction of

propagation and polarization (shear waves) the ratio of the atten-

uation coefficient in the presence of a magnetic field m(H) to

the attenuation coefficient inzero magnetic field is given by

_T--_ 1 1=1+ 2 (lo)

where _c is the cyclotron frequency. If the magnetic field iI

goes to infinity the attenuation coefficient approaches zero.

For q_ >> 1 the attenuation varies in an oscillatory manner

for certain geometries. This phenomena was first explained by

Pippard (ref. 14) and independently by Morse, Bohm and Gavenda

(ref. 15). Their interpretation which appears to agree with

experiment relates the variatieu of the attenuation coefficient

with the relative sizes of the wavelengths and orbit diameter of

the electron.

1966018468-019
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This phenomena can be explained by noticlng that the electrons

Fermi velocity is several hundred times the velocity of the ultra-

sonic wave, the electrons can complete many orbits before inter-

acting with the wave. Thus, due tr the electrons velocity the

variation of the local electric fields appear to be effectively

stationary in space. Consequentlyj the effect of the magnet is

to create a coherence between the electrons velocity and the ions

velocity. It should also be remembered that its only the electrons

at the Fermi surface which can absorb energy from the sound wave

and lose it by relaxation processes.

By adjusting the diameter of the electrons orbit to equal

one half the wavelength of the sound wave a reso1_nce condition is

obtained. Thus, in ultrasonic attenuation maximum attenuation is

obtained by the orbit dimensions rather than the extremal areas as

in the Hass Van Alphen effects.

Using the resonance and cyclotr_ relations

mVF Pc

= eB =m mc

which yields

1966018468-020
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eER
P-

c

l eX (12)AH- cP

Thus, by studying ultrasonic attenuation for single crystals a

great deal of information is obtained about the shape Of the Fermi

surface.

To calculate the attenuation coefficient in the presence of a

magnetic field we make use of the Boltzmann equation. This is

essential]_ the same method as used previously but wl_h the excep-

tion that F in equation (2) is modified to include the external

-j

magnetic field. F is the Lorenz force, _,
c

F_-e +

= _o+ _l J(13)

where H includes both theapplied field H0 and the magnetic

field H1 associated with the sound wave. ,

The solution of the above equation is obtained by an ingenious

method due to Chamber (ref. 16). The assumptions used were, that

(1) the relaxatien time is a constant and

(2)5f= f - f0

which represents the change in the electron distribution f_nctlon _

from the perturbed f to the unperturbed state f0" This change

is set equal to zero immediately after collisions.

1966018468-021
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An electron contributes to the distribution function

f(r0,V0,t 0) only if it is the point r0,V0 with energy E in phase

space at time t0. Th_is electron will have followed a certain

trajectory since its last collision. Thus, at time tI it was

scattered onto trajectory T at rl,V1. The number of electrons

scattered onto T is f(rl,Vl, tl)dtl/T and the probability that

an electron will not scatter before reaching r,V is

exp[-(t 0 - tl)]/T. Thus, the distribution function f(r0,V0,t0)

is found by integrating the number scattered ontc the trajectory

at previous points before reaching r0, weighted by their probar

bility of _eaching r0:

tO dtI , , -(t0-t)/_
f(ro,Vo, to ) = _ f(rl,_l,tl)eT (14)

This technique is denoted as Chamber's trajectory method.
L

_r
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III. CAL_JLATIONS

The relative attenuation coefficient is determined from the

nonvanishing components of the conductivity tensor oij. Using the

e&ua_ions developed by Cohen, Harrison and Harrison the attenu-

ation coefficient under the application of an applied _-agne_ic

field is given by

o22 + i_

Sll = Re , --. 7 7 , " - 1 (15)LOllO22 + (al2 + i_o1

- ]
$22 Re (1 + i_)2-- - i (16)

, (o 12]022 + i_ +
-- _ii

$55 = ReF(,1 + _i_)2-]- 1 (17)
Lass + i_ J

where Sll represents the relative attenuation coefficient for a

lorgitudinal wave moving perpendicular to a magnetic field, 822

corresponds to a transverse wave moving perpendicular to an applied

field and $55 corresponds to a transverse wave moving parallel to

the field. The attenuation is obtained by multiplying Sij by

nm/_VsT.
!

The effective conductivity oij is derived from the con-

16
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ductivity tensor Oij by means of a reciprocal tensor Rij where

i_TV2

Rij = - 5Co(1 - ioyr)Vs2 °ij (18)

and

o' = ['1- R]-I o (19)
o0

The conductivity tensor is given by

Oll- q812 (1 - io_r) - 1 + i(_ c - _)TJ (20)n=-_

n_oo

_22 = 5o0 1 + i('_i_ - oo)'_ (21)

n_oo

o55 : 500 1 + i(no_c - ".D)T (22)
n=-_o

n_co

300 (1 - io._)gn (25)
el2 = -°21 = 2-_ I + i(Iy_c - _)_

n=-_

Here

lo/g_(X) = _ J2n(2t)dt (24)

a gn(X_ (2s)

I
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X

rn(X) = Of t2gn(t)dt (26)

GnU)sn = 3rn - - gn(X) (27)

where X = qVF/mc. This term can be -_itten as the product of the

ultrasonic wavelength and the orbital radius of an electz'onmoving

perpendicu_r to a magnetic field. The radius can be represented

as

VF VF

mc

therefore,

X =qR

The above equations are due to Cohen, Harrison and Earrison.

The calculations of these equations in their preseut form l=rove

to be a formldabletask. This Is due to the nature of the series

which involves integral Bessel functions. Thus, it was necessary

in the Cohen, Harrison and Karrison is_perto limit the equations

for the case where n = 0, hence, elimlnat_g the sums. It was

also feasible throughout products involving qZ terms where this

product was not much greater than one. Due to this limitation no

shift in the relative attenuation for SII was observed and no

single analytic expression which can approach both extremes where

H equals zero and H equals infinity were obtained.

For the new extension the above difficulties are removed. The

only assumptions used throughout _is paper will be that terms

1966018468-025
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involving _ as well as terms containing the square of the ratio

of the classical skin depth to the phonon wavelength is small and

set equal to zero. Most metals fulfill this requirement.

In order to extend the former theory it J_ necessary to take

all the terms into accou_,t. Thus, the relative attenuation coef-

ficient must contain the complete series involving integral

Bessel functions. By using equation (18) in _-:onjunctionwith

equation (20) the effective conductivity tensor can be written as

___._ (i- iayr) gn
1- 1 + i(r_c -_)_

!

ell = 5i_t (i- iay_) (28)

q2Z2 7, (i- ia_)gn1 - ia_ - 1 + i(nmc - m)_

n--oo

(1- i_)

/, i+ i( o-
, = 3ia_ n=-_

o]2 - q---_- n:_ (29)

gn(l-i_)
1 - i_T - 1 + i(n_c - co)_

n_-.oo

_ 5 _ Sna22 1- i_ 1 + i(r/oc -(o)_
n=-_

n_°° I

(i- i_)2
1 + i(n_c - _)_

+ n=-= (30)n=eo

=_._ (1 - im_)gn1 - ia_ - 1 + i'nmc_ - _'_)

1966018468-026



The relative attenuation Sij for ultrasonic waves propagating

in an ideal metal under the application of an applied magnetic field

is derived in appendi× A. However, even though all the terms are

included in a compact form we are still left with the problem of

sunning over integrals which contain Bessel functions. To remove

.his complexity we use a direct approach to the problem of summing

infinte series in closed form. This method is outlined in detail

in appendix B.

Combining the results of appendixes A and B the relative

acUenuation coefficient can be written down as

1

S22 = 31 + (_)2-b - 1 (32)

s33= (_- _ (33)

Here as derived in Appendix B

b = - • ( !)nx2n

• x2 ( x2 .(3_,)
(2n + l) 2 . . . . n2 +

n=l

1966018468-027
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n_--oo

x2 x2 (35)
(2n + 1) 2 + . . . n2 +

n=l

n.__,oo

(561
(qz)2 x2 x2

_zn+ ±j + . . . +

n=l

n--oo

v = _ + (._7)
(2n + 3)(2n + l) + . . . -_. _.2

n=l

These expressions are extremely easy to work with. No diffi-

culty in any of the limiting cases or in any oscillatory situation°

The ease in handling the equations will further be explored in

section IV.

1966018468-028



IV. RESULTS ANDDISCUSSION

Confining ourselves to propagation along directions ef high

symmetry we can avoid some of the complexities Vaich can arise.

There are three cases we shall, analyze in detail. For each case

the relative attenuation coefficient, Sll_ S22 , and $33 under the

application of a magnetic field will be discussed. For the

phenomena of magnetoacoustic oscillations graphs, as well as

tables are presented. Whenever it is possible comparison between

experiment and theory will be made.

A. High Field Limit

When the magnetic field is extremely large the attenuation

coefficient tends to a limit, different for each of the three

attenuation coefficients. This limit is found simply from equa-

tions (34) to (37) by allowing X to go to zero as H approaches

infinity. As X goes to zero the series approaches zero

rapidly. Hence, only the first term of each series is necessary

since any further terms will be zero automatically. Thus, the

following is obtained

22
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n---oo

x____ x2 _ _- (3s)(2n + I) 2 + . , , 2 +
\

n=l
I-I-,=o
X-_O

n"@@

x_-2"_z2) .... - g x (391(2n+ z) 2 + . . . n2 + _2z2)J
n=l
H-boo

X-,O

n_oo

(2n+l)(2n+5) + . . . n2 +

n=l

X-_O

n_O0

q2 Z2 Xq__2) X2
(2n + i) 12 + . . . 2 +

n=l

2X2 X2
_ l-g-+ -- (40)

3q2 _2

1966018468-030
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= +3

(2n + 5)(2n + i) 2 + . . . 2 + q2Z2/J
n=l
H_
X_O

i X2

-" g - ig (_1)

Inserting the above expressions into equations (31) to (33) we

obtain the following values for the relative attenuation coefficient:

= 3 X2 = 15

x2 "_-
T +

2X2 X2

- 15 3q 2 Z2 -

1
%2 = - i = o (_5)

2 X2 + _ +

3q 2 Z3 X2 ]
7- .

I l i]= 0 (44)s33= (i-3__x_)
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The results that 811 saturates in a high magnetic field can

readily be explained by the fact that the electron's gyro radius

becomes smaller and smaller and thus tends to approach the zero

field value. For the case of shear waves the attenuation coef-

ficient tends to zero as H-2. This is due to the fact that the

attenuation decreases since the effective mean free path of the

electrons is decreased. The predictions f_-omthe free electron

model in this respect have great validity.

B. Low Field Limit

In the low field limlt we expect that the attenuation

coefficient to approach Pippard's result for zero magnetic field.

Thus, allowing X to approach infinity wh._le H goes to zero

we obtain the following:

n=_ '_

b=-_ E(12 (-1)nx2n - (n' q__Z2)}X2
(2n + l) + X2 _ 2 +

q2_2J " " "
n=l

H_O
X-,oo

Z (-l)n(qz) n 1= - ' (2'n + l) = 1 - _ tan "l qZ -(45)
n=O

n=oo

= - o (_s)
(2n + l) 2+ _ 2+

 2z2/ • • .  2z2jj
n=l
tt-*O
X_oo
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U, q2z2j" " " q2._2jj
n=l
I--I_,O
X.-.,oo

n.-oo

(_z)2 x_. x2
_.n+ _) + . . . +

n=l
H_O

= 2qz (qz) 2q2z2

n-,,Qo

....I<(2n + 51(2n + "1) q2Z2J . . .
n=l
H--,O
X--_

- 3. t_n-1 qZ + (48)
2qz (qz)2 _.(qz)2

Substituting the above expressions into equations (51) to (33) we

obtain the following:

Sn= 3 . tan_l_z- - l :,_[3z. **n.lq_ - (_9) .-

,- j,
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,..L qz tan-lqz

2(qz)2 (o17.)2+l
S55 = 5 q_ tan-lq_ - = S22 (51)

These results are in exact agreement with Pippard's theory for

th_ case of ultrasonic°wave propagating in a fr2e electron _odel of

_ metal in the absence of _ magnetic field.

C, Magnetoacoustic Oscillations

When the field ±_ of sucL_magnitud_ that the electrons orbit

dimensions are comparable with the wavelength, the attenuation is

oscillatory. The effect of attenuation on the electrons mean _ree

path for longitudi_l and transverse waves is sh_ by figures i

to 6. These plots may be regarded as relative attenuation as a

function of the product of phouon w_ve number and the radius of an

electron. R is inversely proportional to the field.

An important anomaly arises for the case of a longitudin_lwave

moving perpendicular to the magnetic field. This anomaly is

strikingly revealed in figures 1 anl 2, which shows that for differ_

ent qZ values a shift in the minimum occurs. The maximum posi_

tions are not affected by varying qZ. In table I, points of maxi-.
_j

1966018468-034



28

mum and minimum positions for SII are given.

The above anomaly has not been mentioned explicitly by either

Cohen, H_-rrison and Harrison or Kjeldaas and Holstein. Recent

experimental investigations at John Carroll University by

Trivisonno and Said on Potassium have verified that these shifts

do exist. Calculations from equations (31), (34), (35), and (56)

for various q_ values are in good agreement with the magnitudes

of the shifts in the minimum reported by Trivisonno and Said.

The magnitudes for the relative attenuation also coincide with

their experimental results.

The case for a transverse wave moving perpendicular to the

field shows an anomaly in the maxi_ram positions. Here, however,

the shifts in the maximum are extremely small for various q_

values compared to the shifts in the minimum positions of Sll.

The minimum points of $22 show no appreciable change. Due to ,

the extremely small shift in the maximum values no experimental

verification can be obtained. In table II the points of maximum

and minimum positions are given. In figures 5 and 4 a plot of the

attenuation of a transverse wave moving perpendicular to the

magnetic field as a i_mction of the electron mean free path is

presented.

Figures 5 and 6 represent the case where the transverse wave

is in a transverse magnetic field polarized parallel to the field.

Experimental investigations'by Trivisonno and Said 9 as well as

Foster_ Meijer aud Mielczarek 17 on potassium have shown that the
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free electron model is valid, that is, the Fermi surface is spherical.

_e oscillations and magnetic field dependence of attenuation are in
q

accord with the free electron theory.
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APPENDIX A

!

The effective conductivity tensor on can be writter as

_ 1
(i- i_)gn

1 - 1 + i(nmc- _o1_
I

n---oo

' = -5i_o_(1 - icon)X (AI)
°i1 n=_

(i- i_)g_
i - i_ - i + i(n_c - _)_

n _)_

Let

--(_c "_)_

Now

n-_ n-_

1 + la 1 - ia) = 1 + a2 = y

n=,-_ n=-=

Let

l-y=b

then

, _T(I �_2_2)b

°ii - q2Z2(_o_ + ib)(l + i_OT)

5O
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!

For o12 we can write it as follows

m

n=_o t

i"+ia

, 5ia_ u=-_ (A2)
0]-2= q_ n=_

gnCi-i_)

n=-_o
m.

Let

l+a 8

n=-_

m

, 31a_u 3_vu

c,_ = - q_("b- i_'_) = _li(_'_+ Ib)

(a_)2__ _ _2(_)2
q2Z2(_ + ib)8

Let

c=(_ + Ib)

(012)2 _ q2/,2 c2
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Now

_ g'n(l__)2n=_ _" f'+ {a -

, B _ Sn( 1 - io: _ ) n=-- (A3)
022 = 1 - i_r 1 + ia '+ n=-

(i-_)%n='_ i - ion"- i-+ ia

1'I=-oo

Let

n--co

_= i+ az
n = -

Hence j

, +:':)(C22) =- 1 + (02_2

r°i_.7_ _(_ +_ )u_
ka22j (_)2(i+ _._)c[(_)+ u21]

Let

e=b_ +bZ_
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Thus 3

q2Z2 _i+ e_[b- (_y_)2] - d_(b - (_) + i)
Sll --3(1 + _2x2) d2 + e2

Making the approximation

= 3 -1
+b

In the same manner S22 and S$3 can be obtained.
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APPENDIX B

To remove the difficulty in the integral Bessel summation we

begin by writing

n=oo n=oo

= -- + 2o._0 (B1)
i + i('nah - _')T d_0 _0 + nP_cT2

n=-m n=l

where

O_O= l- io_

Let

n--oo n_-oo

n=i n=l

- ""_" I 2_"
d')011/ _0i_ n2

/g-g-g+

n=1

n-.oo

2a 2 ___ gn
= - _0 n2 - a2 (All

n=l

5_
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I

where

Now

lo/Xgu(X) = _ J2n(2t)dt

J2n(2t) = _ (-i)n cos 2n O cos(2t cos 0)d0

fXf_/2 _1

4a2 (-i)n cos 2nO eos(2t cos 8)d8 dt

_o_X n2 _ a2

but

_(-1)n cos 2he. 1 I1 _a cos(2Oa)_--" n2 _ a'2 - 2a--_ sln(a_)

n=l

Hence

A0_2 /X_0 _/2EI - _ac°s(20a)_sin(a_)
- _o--'-_ --! eos(2t cos e)de dt

10/x= - _ Jo(2t)dt
i

o//o+ _ ,eos(2Oa)eos(2t cos O)dt de (A:I._
_4C sln(£_)

1966018468-042



56

Thus 3

X ._/2

- CO--+ _00X sin(a_-_ cos(20u)cos(2t cos D)d0 dt (AI)

However,

f eos(2t cos O)eos 20a dO=_- sin(a_r)
O

× i + _j (-l)n(t)2n(12 _ a2)(22 _ a2) . . (n2 _ a2)
n=l

Henc e,

go _ 1 (-l)n(t)2n go 1
- _0 + + = -_+_°_0X (I2 - a_i _ _ _ in2 - a2) mO o_0

n=l

n,_l:lo

+ __ (-l)q_Z2i(x)2n(2n + l)i(l + X2 ... (n2 + Xq_21_ (A1)
n=l
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Therefore,

j

gn
i+ i(n_c - _)¥

1 1 \ <'l)X2n
_0 (2n+l) + . . . ;J

- n=l

_0 = 1 - law _ 1

In the report the above equation is always subtracted by 1

thus we denoted, the summation portion as b.

Using the same pro6edure we find that

n=_

(-lln2 x2°'lo(_.n+_) + """_,o._i_JJ

For rn we use the following relationships:

n=oo

1 '4' i(_ - _),_ (,_s)

= t2J2n(2t)dt
rn " g-_ 0

1966018468-044



38

Usir_ the same method as was done for B - i we obtain

n-._oo

rn 1
r1=-_o

n--.oo

- -v (B_)
+ ' _

(2n+3)(2_+_) + ... +x_L_l
q2Z2/]

n=l

For sn the same procedure is carried out,

n=_ II=_

2 7,Sn , rn gn

i + i(n_c -_)'_= _' ]-+ i(n_,.-_- " (i+ i(r_J_c_)¥
II=-_ II='_ II'-'_ ,.

u S

,J
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TABLE I. - Sll EXTREMA.

q_ Maximum, Relative Minimum, Relative
X attenuation X attenuation

r

25 0 41.7 2.85 28.62
4.05 38 .59 5 •95 17.Ol
7.25 21.27 9.05 15.95

i0.45 16.55 ]_2.15 ]_2.92

18 0 21.6 2.80 15.25
4.05 20. 4 5.90 9.99
7.25 3.2.21 9.00 8.96

I0.45 i0.12 12. IS 8.78

].5 0 15 2.75 i0.81
4.0 14.54 3.85 7.65
7.25 9.17 8.95 7.20

10.45 7.94 12.10 7.20

13 0 11.27 2.70 8.29
4.0 1"1.].8 5.80 6.27
7.25 7.41 8.95 6.12

i0 •45 6 .62 12 •i0 6 •18

11 0 8.07 2.6 6.12
4.0 8.50 5.8 5.05
7.25 5.85 8 .95 7•20

10.4.5 7.94 12 .i 7.20

9 0 5.40 2.45 4.27

4.0 5.87 5.75 5.97
7.25 4.47 8.90 4.11
i0 •50 4.27 12 .05 4.18
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TABLE II. - S22 EX_.

q_ Maximum, Relative Minimum, Relative
X attenuation X attenuatiom

25 ¢.20 8.80 0 0
7.40 i0.20 5.6 5.75

i0.55 i0.66 8.85 6.17

18 4.20 7.56 0 0

7.40 7.86 5.6 5.50
10 . 55 7 . 72 8 . 85 5 •54

15 4.20 6.70 0 0
"7.AO 6.56 5.60 .5.52
I0.55 6 •50 9 .85 4.79

15 4.15 5 •98 O 0
7.55 5.61 5.6 5.15

10.55 5.34 8.85 4.35

Ii 4.15 5.]_I 0 0
7 .55 4.61 5 .6 2 •91

10.55 4.57 8.85 5 79

9 4.15 4.]_1 0 0
7.55 5.60 5.60 2.59

10.55 5.44 8.85 5.17
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